A Key Intermediate towards Oxylipins. A Formal Synthesis of (12S)-HETE and (12S)-LTB₄[†] Abdelhamid Benkouider^a and Patrick Pale*^b

^aLaboratoire de Chimie Organique Physique, Associé au CNRS, Université de Reims-Champagne-Ardenne, BP 347, 51100 Reims, France b Laboratoire de Synthèse et Réactivité Organique, Université L. Pasteur, 4 rue B. Pascal, 67000 Strasbourg, France

A key intermediate in the synthesis of various oxylipins, the optically active (3S,5Z)-3-methoxymethoxyundec-5-en-1 yne, has been obtained in 11 steps starting from propane-1,3-diol, with an overall yield of 14%.

Oxidized metabolites of fatty acid, $oxylipins$ ¹, commonly found in marine organisms,² constitute a new, rapidly growing family of natural products. The scarcity of these compounds, their almost unknown biological activity and the fact that a large part of them also belongs to the eicosanoid $family²$ an important class of metabolites involved in mammalian physiology and diseases, are leading to increasing interest in their studies.^{1,2,6-8} Engaged in this area,^{3,4} we describe here an enantioselective synthesis of (3S,5Z)- 3-methoxymethoxyundec-5-en-1-yne, a key intermediate towards various oxylipins.

Since several $oxylipins⁵$ share a common unit containing Z and E double bonds as well as an allylic alcohol having the S absolute configuration (Scheme 1), a $(3S,1E,5Z)$ -3hydroxyundeca-1,5-dienyl organometallic would be a convenient reagent for their synthesis. Adding this reagent to a cyclopropyl aldehyde should give access to constanolactones⁶ and solandelactones⁷ or engaging it in coupling reactions should afford polyenic oxylipins.⁸ Such an organometallic compound could be obtained by hydrometallation of the corresponding acetylene i.e. (3S,5Z)-undec-5-en-1-yn-3-ol.

Constanolactone A: R^1 = OH, R^2 = H, R = CH₂ Constanolactone B: $R^1 = H$, $R^2 = OH$, $R = CH_2$ Solandelactone A: $R^1 = H$, $R^2 = OH$, $R = (CH_2)_3$ Solandelactone B: R^1 = OH, R^2 = H, R = (CH₂)₃ Solandelactone E: $R^1 = H$. $R^2 = OH$. R = CH=CHCH₂ Solandelactone F: R^1 = OH, R^2 = H, R = CH=CHCH₂

Scheme 1

This optically active (S) -prop-2-ynylic alcohol has only been described once in the literature but without details, 9 in contrast to its (R) -enantiomer which was obtained after opening a chiral glycidol,¹⁰ sugar modifications¹¹ or from enzymatic resolution of the corresponding racemic acetate.⁹ We devised an alternative route based on asymmetric reduction of ynones 12 which allows for more flexibility in the introduction of the chirality and of various substituents.

Several ynones bearing different protecting groups have been prepared from propane-1,3-diol using standard chemistry except for the deprotection of the acetylenic function. Carefully controlled conditions were required and sodium borate in aqueous methanol proved to be the perfect reagent affording $4a-c$ in excellent yields (Scheme 2). These ynones were then submitted to Alpine-borane.^{12b} The enantiomeric purity of the prop-2-ynylic alcohols so obtained, $5a-b$, $6a-c$, was determined after converting each one to (3S,5Z)-undec-5-en-1-yn-3-ol and comparing each optical rotation with the value reported for the known enantiomer.^{9,10} As shown in Table 1, ee (enantiomeric excess) varied upon protection or otherwise of the acetylenic and hydroxy functions (entry

Scheme 3 Reagents: i, CICH₂OCH₃, NEtPrⁱ₂, DMAP, CH₂Cl₂ $(84%)$; ii, Buⁿ₄NF, THF $(98%)$; iii, BuⁿLi, THF then Me₃SiCI (74%); iv, DMSO, $(COC)_{2}$, NEt₃, THF (79%); v, Ph₃P($C_6H_{11}^{\prime\prime}$)⁺, Br⁻, sodium hexamethyldisilazide, HMPA-THF (54%). $MOMO =$ methoxymethoxy

J. Chem. Research (S), 1999, 104-105†

 \dagger This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (S) *, 1999*, Issue 1]; there is therefore no corresponding material in J . Chem. Research (M) . *To receive any correspondence (e-mail: ppale@chimie.u-strasbg.fr).

^aYnone concentration; ^bsee text for ee determination; ^cno transformation; ^dTBDPS = SiBu^tPh₂; THP = tetrahydropyran-2-yl; $9-BBN = 9$ -borabicyclo[3.3.1]nonane.

1 vs. 3, 5 vs. 6), and upon the nature of the remote hydroxy protecting group (entries $5-6$ vs. 1-4). The striking effect \ddagger of the remote protecting group may be due to competition for borane coordination.

The protected pent-4-yne-1,3-diol 5a, obtained with a reasonable optical purity,} was further elaborated to the required oxylipin synthon as shown in Scheme 3. Two steps proved to be critical in this sequence: the oxidation of the free primary alcohol 7 prone to β -elimination and the exclusive formation of the Z double bond achieved via a 'salt free' Wittig reaction.³ Desilylation eventually gave the required terminal acetylene 8. since its (R)-enantiomer has been used in the synthesis of $(12R)$ -HETE¹⁰ as well as $LTB₄,^{8a,10,11}$ the present synthesis constitutes a formal synthesis of their enantiomers, *i.e.* (12S)-LTB₄ and (12S)-HETE, the latter being present in marine organisms.^{5c,5a}

Experimental

NMR spectra were recorded on a Bruker AC-250. J values are in Hz. IR spectra were recorded on a Spectrafile IR Plus MIDAC spectrometer. Mass spectra were measured on a Jeol D300 (70 eV) mass spectrometer. Solvents and the usual reagents were dried and purified by conventional methods.

Desilylation. 5-tert-Butyldiphenylsilyloxypent-1-yn-3-one 4a.—To a solution of 3a (4.6 g, 11.27 mmol) in methanol (80 ml) was added a 0.01 M aqueous borax solution (25 ml). After 30 min at room temperature, the mixture was chilled to 0° C then treated with 10% HCl aqueous solution (20 ml). After methanol evaporation, the mixture was extracted with diethyl ether $(3 \times 60 \text{ ml})$, the organic phase was then dried and concentrated yielding a clear oil which was purified by flash chromatography. δ_H 1.07 (9H, s), 2.83 (2H, t, J 6.1), 3.22 (1H, s), 4.06 (2H, t, J 6.1), 7.43 (6H, m), 7.70 (4H, m); δ _C 19.15 (s), 26.70 (q), 48.12 (t), 59.02 (t), 78.74 (s), 81.39 (d), 127.68 (d), 129.72 (d), 133.28 (s), 135.55 (d), 185.54 (s); v/cm^{-1} (CHCl3): 3280, 2090, 1670; m/z (%): 279 (11), 278 (63), 248 (10), 206 (100), 200 (41).

Data for $(3S, 5Z)$ -3-methoxymethoxyundec-5-en-1-yne $8 - [\alpha]_D^2$ ⁰ -106 (c = 0.85, CH₂Cl₂); δ_H 0.91 (3H, t, J 7), 1.25–1.45 (6H, m), 2.07 (2H, td, J 7.0, 7.0), 2.42 (1H, d, J 1.9), 2.50 91H, dd, J 6.2, 0.5), 2.53 (1H, dd, J 6.9, J 0.5), 3.41 (3H, s), 4.33 (1H, ddd, J 6.6, 6.6, 1.9), 4.61 (1H, d, J 6.7), 4.93 (1H, d, J 6.7), 5.42 (1H, dtt, J 10.8, 6.6, J 1.6), 5.59 (1H, dtt, J 10.8, 6.2, 1.6); δ_C 14.02 (q), 22.50 (t), 27.41 (t), 29.16 (t), 31.45 (t), 33.52 (t), 55.59 (d), 65.22 (q), 73.49 (d), 82.31 (s), 94.09 (t), 123.58 (d), 133.22 (d). ν/cm^{-1} (CHCl₃): 3290, 2080; m/z (%): 211 (M⁺+1, <1), 124 (46), 99 (100), 96

(42), 91 (47), 82 (68), 68 (75), 55 (52). Found: C, 74.54; H, 10.29, $C_{13}H_{22}O_2$ requires C 74.28; H 10.47%.

A. B. thanks the French and Algerian governments for a doctoral fellowship.

Received, 10th September 1998; Accepted, 19th October 1998 Paper E/8/07074A

References

- 1 W. H. Gerwick, Chem. Rev., 1993, 93, 1807.
- 2 W. H. Gerwick and M. W. Bernart, Eicosanoids and related compounds from marine algae, in Marine Biotechnology, Vol. I: Pharmaceutical and bioactive natural products, ed. D. H. Attaway and O. R. Zaborsky, Plenum, New York, 1992, p. 101.
- 3 D. Grandjean, P. Pale and J. Chuche, Tetrahedron, 1991, 47, 1215.
- 4 A. Benkouider, PhD Thesis, 1994, University of Reims-Champagne-Ardenne, Reims; C. Barloy-Da Silva, PhD Thesis, 1998, University L. Pasteur, Strasbourg.
- 5 (a) Constanolactones: D. G. Nagle and W. H. Gerwick, J. Org. Chem., 1994, 59, 7227; Tetrahedron Lett., 1989, 31, 2995; (b) Solandelactones: Y. Seo, K. W. Cho, J.-R. Rho, J. Shin, B.-M. Kwon, S.-H. Bok and J.-I. Song, Tetrahedron, 1996, 52, 10583; (c) 12 S-HETE and 6E-LTB4: M. W. Bernart and W. H. Gerwick, Phytochemistry, 1994, 36, 1233.
- 6 For other synthetic approaches towards these lactones, see: S. Varadarajan, D. K. Mohapatra and A. Datta, Tetrahedron Lett., 1998, 39, 5667; H. Miyaoka, T. Shigemoto and Y. Yamada, Heterocycles, 1998, 47, 415; J. D. White and M. S. Jensen, J. Am. Chem. Soc., 1995, 117, 6224; T. Nagasawa, Y. Onoguchi, T. Matsumoto and K. Suzuki, Synlett, 1995, 1023.
- 7 For another approach towards these lactones, see: S. Varadarajan, D. K. Mohapatra and A. Datta, Tetrahedron Lett., 1998, 39, 1075.
- 8 For related synthesis of eicosanoids, see: (a) D. Chemin and G. Linstrumelle, Tetrahedron, 1992, 48, 1943; (b) K. C. Nicolaou, J. Y. Ramphal, N. A. Petasis and C. N. Serhan, Angew. Chem., Int. Ed., 1991, 30, 1100.
- 9 M. Treilhou, A. Fauve, J.-R. Pougny, J. C. Promé and H. Veschambre, J. Org. Chem., 1992, 57, 3203.
- 10 K. C. Nicolaou, J. Y. Ramphal and Y. Abe, Synthesis, 1989, 898.
- 11 P. Pianetti, P. Rollin and J.-R. Pougny, Tetrahedron Lett., 1986, 27, 5853.
- 12 (a) H. C. Brown and P. V. Ramachandran, Acc. Chem. Res., 1992, 25, 16; (b) M. M. Midland, A. J. Tramontano, A. Kazubski, R. S. Graham, D. J. S. Tsai and D. B. Cardin, Tetrahedron, 1984, 40, 1371; M. M. Midland and R. S. Graham, Org. Synth., 1984, 63, 57; (c) C. Helal and E. J. Corey, Tetrahedron Lett., 1995, 36, 9153; (d) C. J. Helal, P. A. Magriotis and E. J. Corey, J. Am. Chem. Soc., 1996, 118, 10938.

[‡]A remote steric effect across a C-C triple bond was recently observed in another enantioselective reduction: see ref. 12(d). }The ees obtained are similar to the highest described for related compounds.^{12a,}